BELYI MAPS AND DESSINS D'ENFANTS LECTURE 13

SAM SCHIAVONE

CONTENTS

I. Review 1
II. Fuchsian triangle groups 2
II.1. Hyperbolic triangles and areas 2
II.2. Reflections and rotations 3
II.3. Triangle groups 4
III. The modular group as a triangle group 5
III.1. The modular group 5
III.2. Subgroups and congruence subgroups 6

I. REVIEW

Last time we:
(1) Took a whirlwind tour of hyperbolic geometry in \mathfrak{H} (and \mathfrak{D}).
(a) The group of orientation-preserving isometries of \mathfrak{H} is \qquad .
(b) The geodesics of \mathfrak{H} are \qquad that \qquad orthogonally.
(2) Defined Fuchsian groups.
(a) A Fuchsian group is a \qquad subgroup of $\operatorname{PSL}_{2}(\mathbb{R})$.
(b) Fuchsian groups act
(3) Defined the notion of a fundamental domain for a Fuchsian group, and looked at some pictures of fundamental domains.

Definition 1. A Fuchsian group is a discrete subgroup of $\mathrm{PSL}_{2}(\mathbb{R})$, i.e., a subgroup such that the subgroup topology is the discrete topology.
Proposition 2. A subgroup $\Gamma \leq \mathrm{PSL}_{2}(\mathbb{R})$ is Fuchsian iff it acts properly discontinuously on \mathfrak{H}.
Definition 3. Let $\Gamma \leq \mathrm{PSL}_{2}(\mathbb{R})$, and let D be a simply connected closed subset of \mathfrak{H} whose boundary ∂D consists of a finite union of differentiable paths. D is a fundamental domain for Γ if $\{\gamma(D): \gamma \in \Gamma\}$ tessellates \mathfrak{H}, i.e,
(1) $\bigcup_{\gamma \in \Gamma} \gamma(D)=\mathfrak{H}$; and
(2) for every $\gamma \in \Gamma \backslash\{1\}$, the intersection $D \cap \gamma(D)$ is contained in the boundary of D.

Remark 4. In other words, any two translates of D don't intersect, except possibly on their boundaries. More formally,

$$
D^{\circ} \cap(\gamma D)^{\circ}=\varnothing
$$

for all $1 \neq \gamma \in \Gamma$, where D° denotes the interior of D.

II. FUCHSIAN TRIANGLE GROUPS

II.1. Hyperbolic triangles and areas. A hyperbolic triangle in \mathfrak{H} is a topological triangle whose edges are hyperbolic geodesic segments. We allow the possibility of triangles with edges of infinite length, in which case at least one of the vertices lies in $\mathbb{P}^{1}(\mathbb{R})=\mathbb{R} \cup\{\infty\}$.

The characteristic property of hyperbolic spaces is the fact that the sum of the angles of a hyperbolic triangle is less than π.

Proposition 5. If T is a hyperbolic triangle with angles α, β, γ, then the hyperbolic area of T is $a(T)=\pi-\alpha-\beta-\gamma$.

Proof. We begin by making some reductions. First we show that it suffices to prove the result for triangles with at least one 0 angle. Assume we have proved the proposition for this case. If T is a triangle with angles α, β, γ, we can construct another triangle T^{\prime} as below such that both T^{\prime} and $T \cup T^{\prime}$ are triangles with one 0 angle.

Then we know the result for the area of T^{\prime} and $T \cup T^{\prime}$, so

$$
\begin{aligned}
a(T) & =a\left(T \cup T^{\prime}\right)-a\left(T^{\prime}\right)=(\pi-\alpha-(\gamma+\theta)-0)-(\pi-\theta-(\pi-\beta)-0) \\
& =\pi-\alpha-\beta-\gamma
\end{aligned}
$$

as desired.
Thus it remains to prove the result when one of the angles is 0 . By applying an isometry of \mathfrak{H}, we can assume that one of the vertices is at ∞, and the two edges that intersect with angle 0 are vertical lines intersecting at ∞. Moreover, we can assume that the other edge is a segment of a circle centered at 0 of radius r.

One can calculate the area of this triangle directly by computing an integral, which I'll ask you to do for homework.
II.2. Reflections and rotations. There are hyperbolic analogues of reflections and rotations. Lines are geodesics in Euclidean space, and just as we can define a reflection across a line, we can define a hyperbolic reflection across a geodesic.

Given a geodesic L in \mathfrak{H}, the reflection R_{L} over L is the unique nontrivial isometry fixing every point of L. For instance, the reflection across the imaginary axis L_{0} is $R_{0}: z \mapsto-\bar{z}$, and all other reflections are conjugate to this one. That is, given an arbitrary geodesic L in \mathfrak{H}, then $R_{L}=M \circ R_{0} \circ M^{-1}$ where $M \in \mathrm{PSL}_{2}(\mathbb{R})$ is an isometry such that $M\left(L_{0}\right)=L$. Note that reflections are anticonformal-they preserve angles, but reverse orientation. Thus a reflection R is not holomorphic, but rather is antiholomorphic. In other words, R can be written in the form

$$
R(z)=\frac{a \bar{z}+b}{c \bar{z}+d}
$$

with $a, b, c, d \in \mathbb{R}$ and $a d-b c=-1$.
Just as for Euclidean space, the composition of two reflections is a rotation, and more specifically, if R_{1} and R_{2} are reflections fixing geoedesics L_{1} and L_{2}, then $R_{2} \circ R_{1}$ is a rotation about the point of intersection of L_{1} and L_{2}, and if the angle between L_{1} and L_{2} is θ, then $R_{2} \circ R_{1}$ is a rotation by 2θ.

For instance, the imaginary axis L_{1} and the unit circle L_{2} intersect at a 90° angle at i. As mentioned above, then $R_{1}: z \mapsto-\bar{z}$ and $R_{2}: z \mapsto 1 / \bar{z}$, so

$$
R_{2} \circ R_{1}: z \stackrel{R_{1}}{\mapsto}-\bar{z} \stackrel{R_{2}}{\mapsto} \frac{1}{(-\bar{z})}=-1 / z .
$$

The corresponding matrix is

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
\cos (\pi / 2) & -\sin (\pi / 2) \\
\sin (\pi / 2) & \cos (\pi / 2)
\end{array}\right) .
$$

Remark 6. Although this looks like a rotation by $\pi / 2$, it's actually a rotation by π. Note that the matrix

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
\cos (\pi) & -\sin (\pi) \\
\sin (\pi) & \cos (\pi)
\end{array}\right)
$$

acts as the identity, since it sends $z \mapsto \frac{-z}{-1}=z$.
II.3. Triangle groups. Let $a, b, c \in \mathbb{Z}_{\geq 2}$ such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}<1$. Then there is a hyperbolic triangle T with angles $\pi / a, \pi / b, \pi / c$. Denote the corresponding vertices by z_{a}, z_{b}, and z_{c}. Let L_{a}, L_{b}, L_{c} be the edge opposite z_{a}, z_{b}, z_{c}, and let $\tau_{a}, \tau_{b}, \tau_{c}$ be the reflections over the geodesic L_{a}, L_{b}, L_{c}, respectively. Let

$$
\delta_{a}=\tau_{c} \tau_{b} \quad \delta_{b}=\tau_{a} \tau_{c} \quad \delta_{c}=\tau_{b} \tau_{a}
$$

which are counterclockwise rotations about z_{a}, z_{b}, z_{c} by $2 \pi / a, 2 \pi / b, 2 \pi / c$.
By repeatedly applying the reflections $\tau_{a}, \tau_{b}, \tau_{c}$, we obtain a tessellation of \mathfrak{D} by T. [Show picture on p. 118 of GGD.]

Proposition 7. The triangle T is a fundamental domain for the group $\left\langle\tau_{a}, \tau_{b}, \tau_{c}\right\rangle$ generated by the reflections.

Reflections are anti-holomorphic, so it's often easier to work with rotations, which are holomorphic. Letting $T^{-}=\tau_{c}(T)$, then we can also tessellate \mathfrak{D} by repeatedly applying the rotations $\delta_{a}, \delta_{b}, \delta_{c}$ to the quadrilateral, which we call a triangle-pair or tri-pair for short,

$$
Q=T \cup T^{-}=T \cup \tau_{c}(T)
$$

comprised of the union of T and T^{-}.

Figure 1. Hyperbolic reflections and rotations in \mathfrak{H}

Definition 8. Given $a, b, c \in \mathbb{Z}_{\geq 2}$ such that $1 / a+1 / b+1 / c<1$, the triangle group $\Delta(a, b, c)$ is the subgroup $\left\langle\delta_{a}, \delta_{b}, \delta_{c}\right\rangle$ of $\operatorname{Aut}(\mathfrak{D}) \cong \operatorname{PSL}_{2}(\mathbb{R})$.

Proposition 9. The triangle-pair Q is a fundamental domain for $\Delta(a, b, c)$.
Proposition 10. The triangle group $\Delta(a, b, c)$ has presentation

$$
\left\langle\delta_{a}, \delta_{b}, \delta_{c} \mid \delta_{a}^{a}=\delta_{b}^{b}=\delta_{c}^{c}=\delta_{a} \delta_{b} \delta_{c}=1\right\rangle .
$$

Remark 11. In the case where any of a, b, c are ∞, the "relation" $\delta_{a}^{\infty}=1$ means no relation. For instance,

$$
\Delta(\infty, \infty, \infty)=\left\langle\delta_{a}, \delta_{b}, \delta_{c} \mid \delta_{a} \delta_{b} \delta_{c}=1\right\rangle=\left\langle\delta_{a}, \delta_{b}\right\rangle
$$

is the free group on two generators.

Figure 2. Hyperbolic rotations in \mathfrak{D}
One can show that the triangle group $\Delta=\Delta(a, b, c)$ acts properly discontinuously on \mathfrak{D} for all choices of $a, b, c \in \mathbb{Z}_{\geq 2}$ such that $1 / a+1 / b+1 / c<1$. In other words, Δ is a Fuchsian group, so the quotient $\Delta \backslash \mathfrak{D}$ can be given the structure of a Riemann surface.
Proposition 12. $\Delta \backslash \mathfrak{D} \cong \mathbb{P}^{1}$, as Riemann surfaces.
Remark 13. In the case where some of a, b, c are ∞, then $\Delta \backslash \mathfrak{D}$ is isomorphic to \mathbb{P}^{1} minus one, two, or three points.
Remark 14. When $1 / a+1 / b+1 / c$ is >1 or $=1$, then instead the triangle T naturally lives on either the sphere or the Euclidean plane, rather than in hyperbolic space. One can similarly define a spherical or Euclidean triangle group in the same way. [Show picture on p. 120 of GGD.]

III. The modular group as a triangle group

III.1. The modular group. Recall that a Fuchsian group is a discrete subgroup of $\mathrm{PSL}_{2}(\mathbb{R})$. One way to obtain such a group is to take a lattice L in \mathbb{R}, and then take $\mathrm{PSL}_{2}(L)$. In particular,

$$
\Gamma(1):=\operatorname{PSL}_{2}(\mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z}) /\{ \pm I\}
$$

is a Fuchsian group, called the modular group. We can show that this quite famous group (cf., modular forms) is actually a triangle group.

Let T be the hyperbolic triangle with vertices at $z_{a}=i, z_{b}=e^{2 \pi i / 6}$, and $z_{c}=\infty$ in \mathfrak{H}. The angles of T are $\pi / 2, \pi / 3$, and 0 , respectively. As usual, let $Q=T \cup T^{-}$be the union of T with its reflection across the imaginary axis. [Show picture on p .121 of GGD.]

Two important elements of $\Gamma(1)$ are

$$
T: z \mapsto z+1 \quad 5 \quad S: z \mapsto-1 / z
$$

which are represented by the matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Proposition 15. Q is a fundamental domain for $\Gamma(1)$.
Proof sketch. We'll just show the first property of being a fundamental domain, namely that every point $z \in \mathfrak{H}$ is $\Gamma(1)$-equivalent to some point in Q.

Given $z \in \mathfrak{H}$, by repeatedly applying the translation T or its inverse, we can move z into the vertical strip $-1 / 2 \leq \operatorname{Re}(z) \leq 1 / 2$. Replace z by the point with this property. If $|z| \geq 1$, then $z \in Q$, and we are done. Otherwise, $|z|<1$ and applying S, we have

$$
\operatorname{Im}(S(z))=\operatorname{Im}(-1 / z)=\operatorname{Im}\left(-\bar{z} /|z|^{2}\right)=\operatorname{Im}\left(z /|z|^{2}\right)>\operatorname{Im}(z)
$$

Replace z by $-1 / z$ and repeat the process. We claim that this algorithm terminates and produces a point inside Q that is $\Gamma(1)$-equivalent to our original z.

A straightforward computation shows that

$$
\operatorname{Im}(\gamma z)=\frac{\operatorname{Im}(z)}{|c z+d|^{2}} \quad \text { for } \quad \gamma= \pm\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma(1)=\operatorname{PSL}_{2}(\mathbb{Z}) .
$$

Since there are only finitely many lattice points inside a disc, then there are only finitely many integer pairs $(c, d) \in \mathbb{Z}^{2}$ such that $|c z+d|<1$. Thus there are only finitely many $\gamma \in \Gamma(1)$ such that γz has strictly larger imaginary part, which shows that the algorithm terminates.

Corollary 16. $\Gamma(1) \cong \Delta(2,3, \infty)$.

III.2. Subgroups and congruence subgroups.

Lemma 17. Let Γ and Γ^{\prime} be Fuchsian groups. Suppose that $\Gamma^{\prime} \leq \Gamma$ and $\left[\Gamma: \Gamma^{\prime}\right]=n$. Let $\gamma_{1}, \ldots, \gamma_{n} \in \Gamma$ be a set of right coset representatives of $\Gamma^{\prime} \backslash \Gamma$. Let Q be a hyperbolic polygon that is a fundamental domain for Γ. Then

$$
D:=\bigcup_{j=1}^{n} \gamma_{j}(Q)
$$

is a fundamental domain for Γ^{\prime}.
Remark 18. In other words, if we know a fundamental domain Q for a Fuchsian group Γ and $\Gamma^{\prime} \leq \Gamma$, we can obtain a fundamental domain for Γ^{\prime} by translating Q by a set of coset representatives.

An important class of subgroups of $\Gamma(1)$ are so-called principal congruence subgroups. For $N \in \mathbb{Z}_{\geq 1}$, the principal congruence subgroup $\Gamma(N)$ is the kernel of the reduction map

$$
\Gamma(1)=\mathrm{PSL}_{2}(\mathbb{Z}) \rightarrow \mathrm{PSL}_{2}(\mathbb{Z} / N \mathbb{Z})
$$

that reduces the entries of a matrix modulo N. In other words, $\Gamma(N)$ fits into a short exact sequence

$$
1 \rightarrow \Gamma(N) \rightarrow \Gamma(1) \rightarrow \operatorname{PSL}_{2}(\mathbb{Z} / N \mathbb{Z}) \rightarrow 1
$$

$\Gamma(2)$ turns out to be of particular interest. We will show that $\Gamma(2) \cong \Delta(\infty, \infty, \infty)$, the free group on two generators.

