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I. REVIEW

Last time we:
(1) Took a whirlwind tour of hyperbolic geometry in H (and D).

(a) The group of orientation-preserving isometries of H is .
(b) The geodesics of H are that orthogonally.

(2) Defined Fuchsian groups.
(a) A Fuchsian group is a subgroup of PSL2(R).
(b) Fuchsian groups act on H.

(3) Defined the notion of a fundamental domain for a Fuchsian group, and looked at
some pictures of fundamental domains.

Definition 1. A Fuchsian group is a discrete subgroup of PSL2(R), i.e., a subgroup such
that the subgroup topology is the discrete topology.

Proposition 2. A subgroup Γ ≤ PSL2(R) is Fuchsian iff it acts properly discontinuously on H.

Definition 3. Let Γ ≤ PSL2(R), and let D be a simply connected closed subset of H whose
boundary ∂D consists of a finite union of differentiable paths. D is a fundamental domain
for Γ if {γ(D) : γ ∈ Γ} tessellates H, i.e,

(1)
⋃

γ∈Γ

γ(D) = H; and

(2) for every γ ∈ Γ \ {1}, the intersection D ∩ γ(D) is contained in the boundary of
D.
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Remark 4. In other words, any two translates of D don’t intersect, except possibly on
their boundaries. More formally,

D◦ ∩ (γD)◦ = ∅

for all 1 6= γ ∈ Γ, where D◦ denotes the interior of D.

II. FUCHSIAN TRIANGLE GROUPS

II.1. Hyperbolic triangles and areas. A hyperbolic triangle in H is a topological triangle
whose edges are hyperbolic geodesic segments. We allow the possibility of triangles with
edges of infinite length, in which case at least one of the vertices lies in P1(R) = R∪ {∞}.

The characteristic property of hyperbolic spaces is the fact that the sum of the angles of
a hyperbolic triangle is less than π.

Proposition 5. If T is a hyperbolic triangle with angles α, β, γ, then the hyperbolic area of T is
a(T) = π − α− β− γ.

Proof. We begin by making some reductions. First we show that it suffices to prove the
result for triangles with at least one 0 angle. Assume we have proved the proposition
for this case. If T is a triangle with angles α, β, γ, we can construct another triangle T′ as
below such that both T′ and T ∪ T′ are triangles with one 0 angle.

Then we know the result for the area of T′ and T ∪ T′, so

a(T) = a(T ∪ T′)− a(T′) = (π − α− (γ + θ)− 0)− (π − θ − (π − β)− 0)
= π − α− β− γ ,

as desired.
Thus it remains to prove the result when one of the angles is 0. By applying an isometry

of H, we can assume that one of the vertices is at ∞, and the two edges that intersect with
angle 0 are vertical lines intersecting at ∞. Moreover, we can assume that the other edge
is a segment of a circle centered at 0 of radius r.
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One can calculate the area of this triangle directly by computing an integral, which I’ll ask
you to do for homework. �

II.2. Reflections and rotations. There are hyperbolic analogues of reflections and rota-
tions. Lines are geodesics in Euclidean space, and just as we can define a reflection across
a line, we can define a hyperbolic reflection across a geodesic.

Given a geodesic L in H, the reflection RL over L is the unique nontrivial isometry fixing
every point of L. For instance, the reflection across the imaginary axis L0 is R0 : z 7→ −z,
and all other reflections are conjugate to this one. That is, given an arbitrary geodesic L
in H, then RL = M ◦ R0 ◦M−1 where M ∈ PSL2(R) is an isometry such that M(L0) = L.
Note that reflections are anticonformal—they preserve angles, but reverse orientation.
Thus a reflection R is not holomorphic, but rather is antiholomorphic. In other words, R
can be written in the form

R(z) =
az + b
cz + d

with a, b, c, d ∈ R and ad− bc = −1.
Just as for Euclidean space, the composition of two reflections is a rotation, and more

specifically, if R1 and R2 are reflections fixing geoedesics L1 and L2, then R2 ◦ R1 is a
rotation about the point of intersection of L1 and L2, and if the angle between L1 and L2
is θ, then R2 ◦ R1 is a rotation by 2θ.

For instance, the imaginary axis L1 and the unit circle L2 intersect at a 90◦ angle at i. As
mentioned above, then R1 : z 7→ −z and R2 : z 7→ 1/z, so

R2 ◦ R1 : z
R17→ −z

R27→ 1
(−z)

= −1/z .

The corresponding matrix is(
0 −1
1 0

)
=

(
cos(π/2) − sin(π/2)
sin(π/2) cos(π/2)

)
.

Remark 6. Although this looks like a rotation by π/2, it’s actually a rotation by π. Note
that the matrix (

−1 0
0 −1

)
=

(
cos(π) − sin(π)
sin(π) cos(π)

)
acts as the identity, since it sends z 7→ −z

−1
= z.
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II.3. Triangle groups. Let a, b, c ∈ Z≥2 such that
1
a
+

1
b
+

1
c
< 1. Then there is a hyper-

bolic triangle T with angles π/a, π/b, π/c. Denote the corresponding vertices by za, zb,
and zc. Let La, Lb, Lc be the edge opposite za, zb, zc, and let τa, τb, τc be the reflections over
the geodesic La, Lb, Lc, respectively. Let

δa = τcτb δb = τaτc δc = τbτa

which are counterclockwise rotations about za, zb, zc by 2π/a, 2π/b, 2π/c.
By repeatedly applying the reflections τa, τb, τc, we obtain a tessellation of D by T.

[Show picture on p. 118 of GGD.]

Proposition 7. The triangle T is a fundamental domain for the group 〈τa, τb, τc〉 generated by the
reflections.

Reflections are anti-holomorphic, so it’s often easier to work with rotations, which are
holomorphic. Letting T− = τc(T), then we can also tessellate D by repeatedly applying
the rotations δa, δb, δc to the quadrilateral, which we call a triangle-pair or tri-pair for short,

Q = T ∪ T− = T ∪ τc(T)

comprised of the union of T and T−.
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FIGURE 1. Hyperbolic reflections and rotations in H

Definition 8. Given a, b, c ∈ Z≥2 such that 1/a+ 1/b+ 1/c < 1, the triangle group ∆(a, b, c)
is the subgroup 〈δa, δb, δc〉 of Aut(D) ∼= PSL2(R).

Proposition 9. The triangle-pair Q is a fundamental domain for ∆(a, b, c).

Proposition 10. The triangle group ∆(a, b, c) has presentation

〈δa, δb, δc | δa
a = δb

b = δc
c = δaδbδc = 1〉 .

Remark 11. In the case where any of a, b, c are ∞, the “relation” δ∞
a = 1 means no relation.

For instance,
∆(∞, ∞, ∞) = 〈δa, δb, δc | δaδbδc = 1〉 = 〈δa, δb〉

is the free group on two generators.
4



b bwa wb1

δa

δ−1

a

δ−1

b

δaδb

δb

δbδa

FIGURE 2. Hyperbolic rotations in D

One can show that the triangle group ∆ = ∆(a, b, c) acts properly discontinuously on
D for all choices of a, b, c ∈ Z≥2 such that 1/a + 1/b + 1/c < 1. In other words, ∆ is a
Fuchsian group, so the quotient ∆\D can be given the structure of a Riemann surface.

Proposition 12. ∆\D ∼= P1, as Riemann surfaces.

Remark 13. In the case where some of a, b, c are ∞, then ∆\D is isomorphic to P1 minus
one, two, or three points.

Remark 14. When 1/a + 1/b + 1/c is > 1 or = 1, then instead the triangle T naturally
lives on either the sphere or the Euclidean plane, rather than in hyperbolic space. One can
similarly define a spherical or Euclidean triangle group in the same way. [Show picture
on p. 120 of GGD.]

III. THE MODULAR GROUP AS A TRIANGLE GROUP

III.1. The modular group. Recall that a Fuchsian group is a discrete subgroup of PSL2(R).
One way to obtain such a group is to take a lattice L in R, and then take PSL2(L). In par-
ticular,

Γ(1) := PSL2(Z) = SL2(Z)/{±I}
is a Fuchsian group, called the modular group. We can show that this quite famous group
(cf., modular forms) is actually a triangle group.

Let T be the hyperbolic triangle with vertices at za = i, zb = e2πi/6, and zc = ∞ in H.
The angles of T are π/2, π/3, and 0, respectively. As usual, let Q = T ∪ T− be the union
of T with its reflection across the imaginary axis. [Show picture on p. 121 of GGD.]

Two important elements of Γ(1) are

T : z 7→ z + 1 S : z 7→ −1/z
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which are represented by the matrices(
1 1
0 1

) (
0 −1
1 0

)
.

Proposition 15. Q is a fundamental domain for Γ(1).

Proof sketch. We’ll just show the first property of being a fundamental domain, namely
that every point z ∈ H is Γ(1)-equivalent to some point in Q.

Given z ∈ H, by repeatedly applying the translation T or its inverse, we can move z
into the vertical strip −1/2 ≤ Re(z) ≤ 1/2. Replace z by the point with this property. If
|z| ≥ 1, then z ∈ Q, and we are done. Otherwise, |z| < 1 and applying S, we have

Im(S(z)) = Im(−1/z) = Im(−z/|z|2) = Im(z/|z|2) > Im(z) .

Replace z by −1/z and repeat the process. We claim that this algorithm terminates and
produces a point inside Q that is Γ(1)-equivalent to our original z.

A straightforward computation shows that

Im(γz) =
Im(z)
|cz + d|2 for γ = ±

(
a b
c d

)
∈ Γ(1) = PSL2(Z) .

Since there are only finitely many lattice points inside a disc, then there are only finitely
many integer pairs (c, d) ∈ Z2 such that |cz + d| < 1. Thus there are only finitely many
γ ∈ Γ(1) such that γz has strictly larger imaginary part, which shows that the algorithm
terminates. �

Corollary 16. Γ(1) ∼= ∆(2, 3, ∞).

III.2. Subgroups and congruence subgroups.

Lemma 17. Let Γ and Γ′ be Fuchsian groups. Suppose that Γ′ ≤ Γ and [Γ : Γ′] = n. Let
γ1, . . . , γn ∈ Γ be a set of right coset representatives of Γ′\Γ. Let Q be a hyperbolic polygon that
is a fundamental domain for Γ. Then

D :=
n⋃

j=1

γj(Q)

is a fundamental domain for Γ′.

Remark 18. In other words, if we know a fundamental domain Q for a Fuchsian group Γ
and Γ′ ≤ Γ, we can obtain a fundamental domain for Γ′ by translating Q by a set of coset
representatives.

An important class of subgroups of Γ(1) are so-called principal congruence subgroups. For
N ∈ Z≥1, the principal congruence subgroup Γ(N) is the kernel of the reduction map

Γ(1) = PSL2(Z)→ PSL2(Z/NZ)

that reduces the entries of a matrix modulo N. In other words, Γ(N) fits into a short exact
sequence

1→ Γ(N)→ Γ(1)→ PSL2(Z/NZ)→ 1 .
Γ(2) turns out to be of particular interest. We will show that Γ(2) ∼= ∆(∞, ∞, ∞), the

free group on two generators.
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